
Objectifs

- Mettre en place du routage dynamique au sein d'un réseau de routeurs de liaison connectés à deux sites distants de soustraitants, avec le protocole OSPF. Les sites distants utilisent un même plan d'adressage en 192.168.0.0/24.
- Sur un des sites terminaux, mettre en place une redondance de routeurs, permettant une tolérance de panne, avec le protocole HSRP.

Architecture sous Packet Tracer

Adressage IP du contexte

Tableau des réseaux de connexion entre routeurs

Du routeur vers le routeur	RtA	RtB	RtC	RtD	RtE	RtF
RtA	-	20.6.6.0/3 0	-	-	-	-
RtB	20.6.6.0/3	-	20.5.5.0/ 30	20.4.4.0/3	20.2.2.0/3	-
RtC	-	20.5.5.0/3	-	-	20.1.1.0/3	-
RtD	-	20.4.4.0/3	-	-	20.3.3.0/3	-
RtE	-	20.2.2.0/3 0	20.1.1.0/ 30	20.3.3.0/3	-	20.0.0.0/30
RtF	-	-	-	-	20.0.0.0/3	-

Plan d'adressage

Périphérique	Interface	Adresse IP	Masque de sous- réseau	Passerelle par défaut
Router A	Fa0/1	192.168.0.254	255.255.255.0	N/A
	50/0/0	20.6.6.2	255.255.255.252	N/A
	Gi0/1	172.11.0.254	255.255.255.0	N/A
	50/0/0	20.6.6.1	255.255.255.252	N/A
Router B	50/0/1	20.5.5.2	255.255.255.252	N/A
	S0/1/0	20.4.4.2	255.255.255.252	N/A
	S0/1/1	20.2.2.2	255.255.255.252	N/A
Router C	S0/0/0	20.1.1.2	255.255.255.252	N/A
Nouter C	S0/0/1	20.5.5.1	255.255.255.252	N/A
	S0/0/0	Partie 4	255.255.255.252	N/A
Router D	S0/0/1	20.3.3.2	255.255.255.252	N/A
	S0/1/0	20.4.4.1	255.255.255.252	N/A
	Gi0/1	172.12.0.254	255.255.255.0	N/A
	S0/0/0	20.0.0.2	255.255.255.252	N/A
Router E	S0/0/1	20.3.3.1	255.255.255.252	N/A
	S0/1/0	20.1.1.1	255.255.255.252	N/A
	S0/1/1	20.2.2.1	255.255.255.252	N/A
Router F	Fa0/0	192.168.0.254	255.255.255.0	N/A
nouter i	S0/0/0	20.0.0.1	255.255.255.252	N/A

Protocole OSPF

• Le routage OSPF (*Open Shortest Path First*) est un protocole de routage dynamique permettant aux routeurs d'échanger des informations sur le réseau et de déterminer les meilleurs chemins pour acheminer les paquets de données à destination

Test de connexion PC à passerelle (PING)

Premier test effectué:

 ping du PC sur le réseau
 de gauche jusqu'au
 routeur A sur la topologie.

```
C:\>ping 192.168.0.254

Pinging 192.168.0.254 with 32 bytes of data:

Reply from 192.168.0.254: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.254:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```


Test de connexion entre routeur (PING)

 Deuxième test effectué: ping du routeur A jusqu'au routeur B sur la topologie.

```
Routeur-A>en
Routeur-A#pi
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to u
Routeur-A#ping 20.6.6.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 20.6.6.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 10/29/41 ms
```


Test du bon fonctionnement du service NAT sur les routeurs terminaux.

Routeur-A#show ip nat statistics
Total translations: 0 (0 static, 0 dynamic, 0 extended)
Outside Interfaces: Serial0/0/0
Inside Interfaces: FastEthernet0/1
Hits: 7 Misses: 52
Expired translations: 8
Dynamic mappings:

Configuration OSPF

- La configuration reste sur les mêmes bases pour tous les routeurs;
- Pour l'exemple on va configurer le routeur A, avec à dispositions le rappel de son adressage IP en entrée et en sortie.

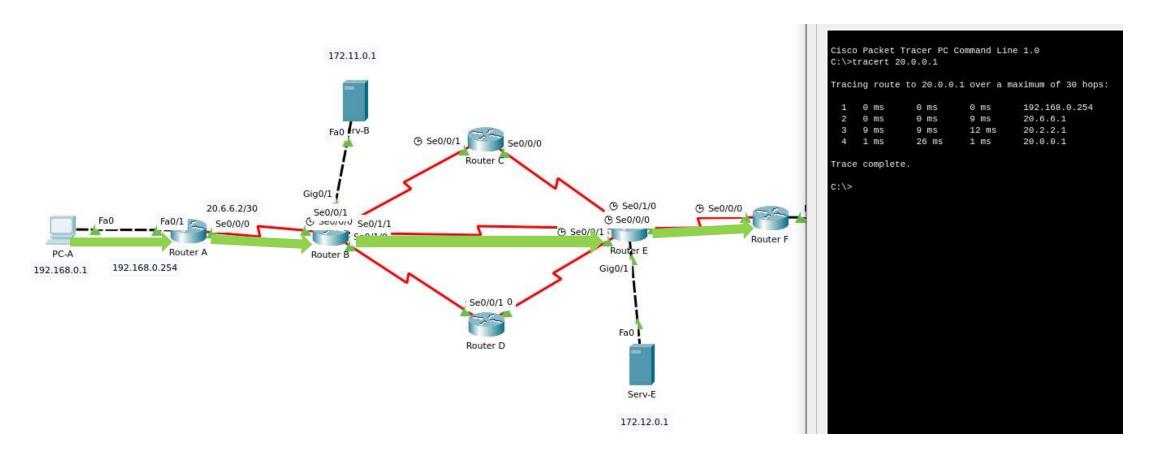
Du routeur vers le routeur	RtA	RtB	RtC	RtD	RtE	RtF
RtA	-	20.6.6.0/3	-	-	-	1-1

Périphérique	Interface	Adresse IP	Masque de sous- réseau	Passerelle par défaut
Router A	Fa0/1	192.168.0.254	255.255.255.0	N/A
	50/0/0	20.6.6.2	255.255.255.252	N/A

Routeur-A>en

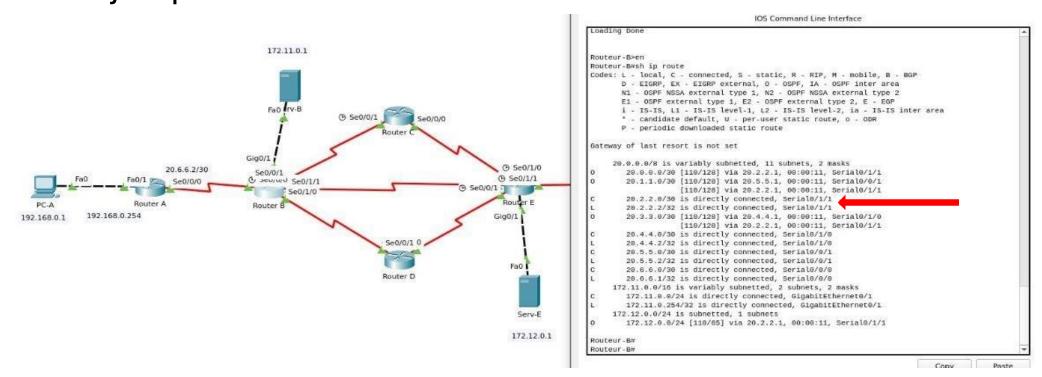
Routeur-A#conf t

Enter configuration commands, one per line. End with CNTL/Z.

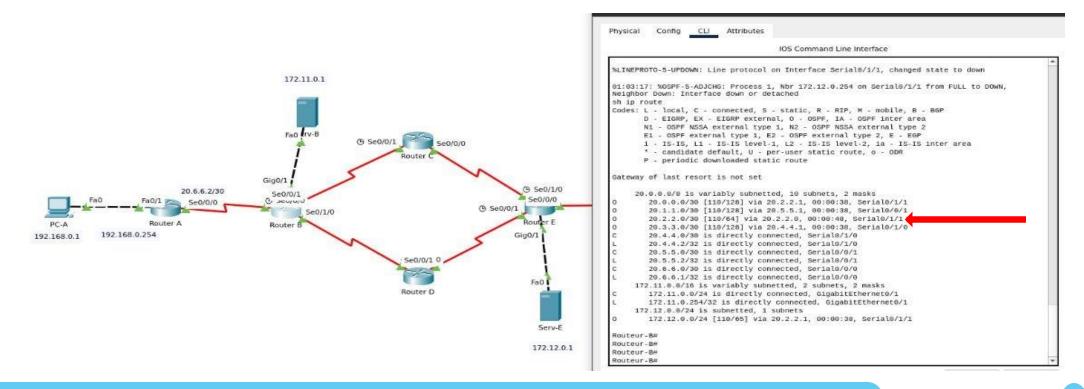

Routeur-A(config)#router ospf 1

Routeur-A(config-router)#network 192.168.0.0 0.0.0.255 area 0

Routeur-A(config-router)#network 20.6.6.0 0.0.0.3 area 0

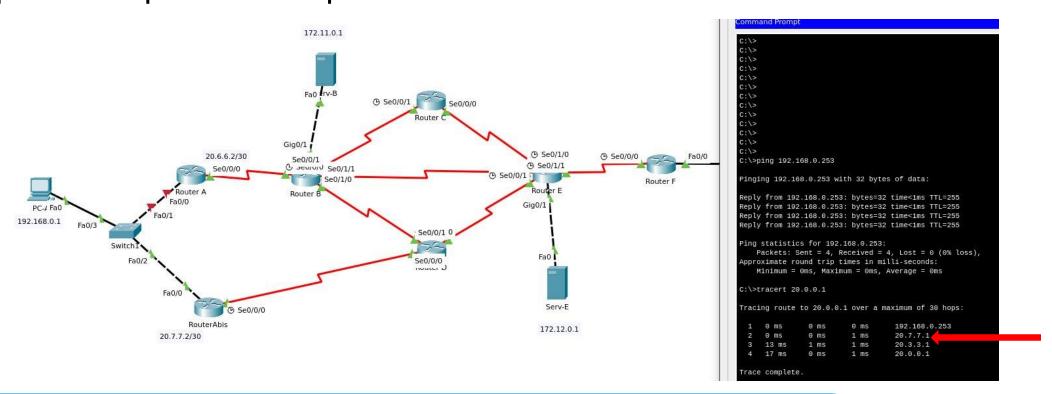

Phase de test avec "tracert" depuis le PC-A vers l'entrée du routeur F

Phase de test avec "show ip route" avant section RtB - RtE


• Toutes les routes fonctionnent normalement, donc on voit les routes directes jusqu'au routeur E.

Phase de test avec "show ip route" après section RtB - RtE

 On remarque que les routes jusqu'au routeur E passent d'abord par d'autres routeurs.


Protocole HSRP

- Le HSRP (Hot Standby Router Protocol) est un protocole développé par Cisco, utilisé pour fournir une redondance de passerelle par défaut dans les réseaux locaux.
- Il permet à plusieurs routeurs ou commutateurs d'agir comme une seule passerelle logique, assurant donc une haute disponibilité en cas de panne.

Modification puis phase de test

 RtA-bis mis en place avec OSPF et changement de la passerelle du PC-A donc phase de test par la suite avec "tracert" pour voir que le PC passe bien par le routeur A-BIS.

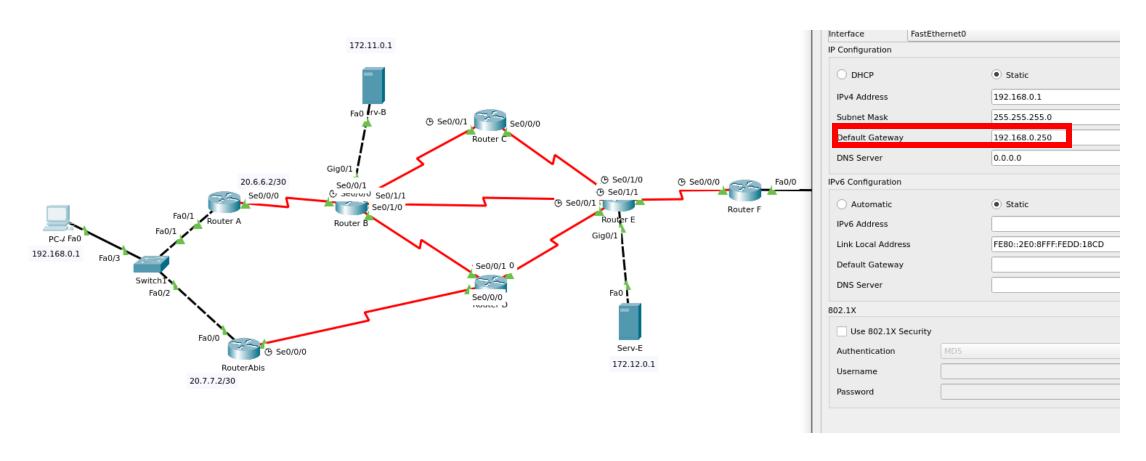
Mise en place du protocole HSRP

Routeur-A(config)#int fa0/1

Routeur-A(config-if)#standby 10 ip 192.168.0.250

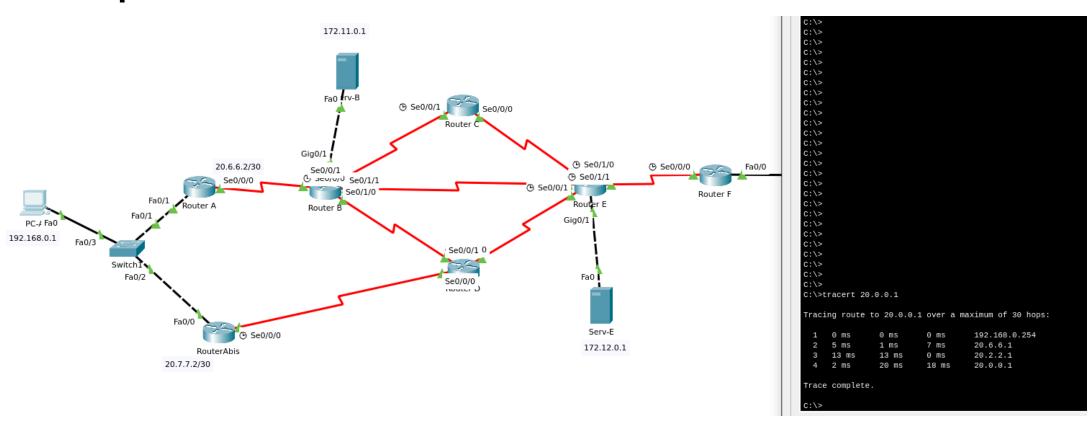
Routeur-A(config-if)#standby 10 preempt

Routeur-A(config-if)# Standby 10 priority 200

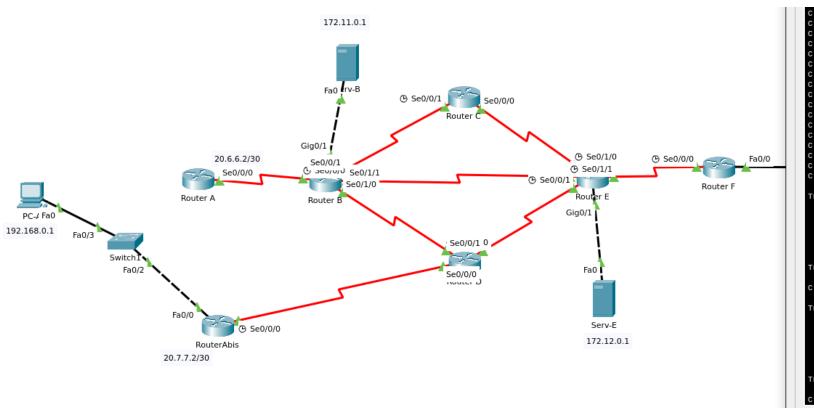

Routeur-Abis(config)#int fa0/1

Routeur-Abis(config-if)#standby 10 ip 192.168.0.250

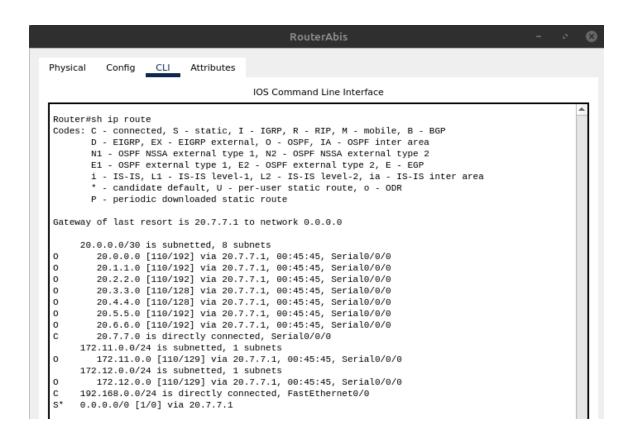
Routeur-Abis(config-if)#standby 10 preempt



Remise en place de la passerelle vers le routeur A



Phase de test avec "tracert", le chemin passe bien par le routeur A


Phase de test avec "tracert" et la liaison du switch vers le routeur A coupée, le chemin passe bien par le routeur de dépannage A Bis


```
C:\>
Trace complete
C:\>tracert 20.0.0.1
       route to 20.0.0.1 over a maximum of 30 hops:
                                     192.168.0.253
```


Configuration des routes sur le routeur A bis

